Thermoelectric generators are devices which convert temperature differences into electrical energy. The principle phenomenon that underpins thermoelectric energy generation is known as the Seebeck effect: the conversion of a temperature differential into electricity at the junction of two materials.
Buy a copy of this report: http://www.researchmoz.us/sample/checkout.php?rep_id=168910&type=S
Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, electricity generation has only seen very limited market in niche applications and it is only in recent years that interest has increased regarding new applications of energy generation through thermoelectric harvesting.
The new applications are varied and the vertical markets benefiting from new devices range from condition monitoring in industrial environments, smart metering in energy market segments, to thermoelectric applications in vehicles, either terrestrial or other.
This report gives an overview of devices, materials and manufacturing processes, with a specific focus on emerging technologies that allow for new functionality, form factor and application in various demanding environments. Whether it is operation in high temperatures or corrosive environments, applications with increased safety demands or components that need to be thin, flexible, or even stretchable, there is a lot of research and development work worldwide which is highlighted.
Source: IDTechEx
Included in the report are interviews with potential adopters of thermoelectric energy harvesters and their views of the impact that the technology could have over their respective industries. Some of the application sectors include:
Waste heat recovery systems in vehicles: A large number of car companies, including Volkswagen, VOLVO, FORD and BMW in collaboration with NASA have been developing thermoelectric waste heat recovery systems in-house, each achieving different types of performance but all of them expecting to lead to improvements of 3-5% in fuel economy while the power generated out of these devices could potentially reach up to 1200W.
Wireless sensor network adoption. Wireless sensors powered by thermogenerators in environments where temperature differentials exist would lead to avoiding issues with battery lifetime and reliability. It would also lead to the ability to move away from wired sensors, which are still the solution of choice when increased reliability of measurement is necessary. Some applications have low enough power demands to operate with small temperature differentials, as small as a few degrees in some cases. These types of developments increase adoption trends.
Consumer applications: In these applications, the type of solution that thermogenerators provide varies: it could be related to saving energy when cooking by utilising thermo-powered cooking sensors, powering mobile phones, watches or other consumer electronics, even body sensing could become more widespread with sensory wristbands, clothing or athletic apparel that monitor vitals such as heart rate, body temperature, etc.
COMPLETE REPORT WITH TOC: http://www.researchmoz.us/thermoelectric-energy-harvesting-2013-2023-devices-applications-opportunities-report.html
Finally, utilising solid assumptions based on the knowledge acquired through extensive primary research and the understanding of the way existing and new markets develop over time, 10-year IDTechEx market forecasts are included in the report.
For More Information Kindly Contact:
Email: sales@researchmoz.us
WebSite:http://www.researchmoz.us/
Buy a copy of this report: http://www.researchmoz.us/sample/checkout.php?rep_id=168910&type=S
Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, electricity generation has only seen very limited market in niche applications and it is only in recent years that interest has increased regarding new applications of energy generation through thermoelectric harvesting.
The new applications are varied and the vertical markets benefiting from new devices range from condition monitoring in industrial environments, smart metering in energy market segments, to thermoelectric applications in vehicles, either terrestrial or other.
This report gives an overview of devices, materials and manufacturing processes, with a specific focus on emerging technologies that allow for new functionality, form factor and application in various demanding environments. Whether it is operation in high temperatures or corrosive environments, applications with increased safety demands or components that need to be thin, flexible, or even stretchable, there is a lot of research and development work worldwide which is highlighted.
Source: IDTechEx
Included in the report are interviews with potential adopters of thermoelectric energy harvesters and their views of the impact that the technology could have over their respective industries. Some of the application sectors include:
Waste heat recovery systems in vehicles: A large number of car companies, including Volkswagen, VOLVO, FORD and BMW in collaboration with NASA have been developing thermoelectric waste heat recovery systems in-house, each achieving different types of performance but all of them expecting to lead to improvements of 3-5% in fuel economy while the power generated out of these devices could potentially reach up to 1200W.
Wireless sensor network adoption. Wireless sensors powered by thermogenerators in environments where temperature differentials exist would lead to avoiding issues with battery lifetime and reliability. It would also lead to the ability to move away from wired sensors, which are still the solution of choice when increased reliability of measurement is necessary. Some applications have low enough power demands to operate with small temperature differentials, as small as a few degrees in some cases. These types of developments increase adoption trends.
Consumer applications: In these applications, the type of solution that thermogenerators provide varies: it could be related to saving energy when cooking by utilising thermo-powered cooking sensors, powering mobile phones, watches or other consumer electronics, even body sensing could become more widespread with sensory wristbands, clothing or athletic apparel that monitor vitals such as heart rate, body temperature, etc.
COMPLETE REPORT WITH TOC: http://www.researchmoz.us/thermoelectric-energy-harvesting-2013-2023-devices-applications-opportunities-report.html
Finally, utilising solid assumptions based on the knowledge acquired through extensive primary research and the understanding of the way existing and new markets develop over time, 10-year IDTechEx market forecasts are included in the report.
For More Information Kindly Contact:
Email: sales@researchmoz.us
WebSite:http://www.researchmoz.us/
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.